Auto MPG Prediction using Tree Architectures of Fuzzy Neural Networks
نویسنده
چکیده
For decades, computational intelligence techniques have been developed and applied to many real world problems. In this paper, tree architectures of fuzzy neural networks are applied to Auto MPG prediction problem. The dataset concerns city-cycle fuel consumption in miles per gallon, to be predicted in terms of 3 multivalued discrete and 5 continuous attributes. Tree architectures of fuzzy neural networks have an advantage of reducing the number of rules by selecting fuzzy neurons as nodes and relevant inputs as leaves optimally. For the optimization of the networks, two-step optimization method is used. Genetic algorithms optimize the binary structure of the networks by selecting the nodes and leaves as binary, and followed by random signal-based learning further refines the optimized binary connections in the unit interval. To verify the effectiveness of the proposed method, Auto MPG dataset obtained from the UCI Machine Learning Repository Database is considered.
منابع مشابه
Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملTime Prediction Using a Neuro-Fuzzy Model for Projects in the Construction Industry
This paper presents a prediction model based on a new neuro-fuzzy algorithm for estimating time in construction projects. The output of the proposed prediction model, which is employed based on a locally linear neuro-fuzzy (LLNF) model, is useful for assessing a project status at different time horizons. Being trained by a locally linear model tree (LOLIMOT) learning algorithm, the model is int...
متن کامل